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Electromagnetic environments are becoming increasingly complex and congested, creating a growing
challenge for systems that rely on electromagnetic waves for communication, sensing, or imaging, partic-
ularly in reverberating environments. The use of programmable metasurfaces provides a potential means
of directing waves to optimize wireless channels on demand, ensuring reliable operation and protecting
sensitive electronic components. Here we introduce a technique that combines a deep-learning network
with a binary programmable metasurface to shape waves in complex reverberant electromagnetic envi-
ronments, in particular ones where there is no direct line of sight. We apply this technique for wavefront
reconstruction and control, and accurately determine metasurface configurations based on measured sys-
tem scattering responses in a chaotic microwave cavity. The state of the metasurface that realizes desired
electromagnetic wave field distribution properties was successfully determined even in cases previously
unseen by the deep-learning algorithm. Our technique is enabled by the reverberant nature of the cavity,
and is effective with a metasurface that covers only approximately 1.5% of the total cavity surface area.
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I. INTRODUCTION

Highly scattering environments scramble electromag-
netic waves, producing interference among the multi-
ple paths between source and receiver. The resulting
spatiotemporal fluctuations can seriously degrade imag-
ing, sensing, and communication systems at microwave
and optical wavelengths, disrupting operation or even
damaging sensitive components. Additional emissions in
these environments, whether from unintentional coupling
between components or from an intentional electromag-
netic attack, can have serious consequences. Future smart
radio environments are envisioned to handle such dynamic
conditions, adapting on the fly to optimize a given wire-
less channel through a spatial light modulator (SLM) [1–
3]. Intelligently controlling wave fields in the presence
of multipath reflections is therefore a critical factor for
enabling smart radio environments. In addition, an intel-
ligent and self-adaptive approach will benefit applications
such as micromanipulation of objects in complex scatter-
ing environments [4], and time-reversal mirrors that can
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selectively focus a wavefront or enhance communication
system performance [5,6]. A necessary step along this
path is to identify approaches for wavefront reconstruction
(i.e., determining the configuration of the SLM that accu-
rately produces a given scattering response) that work in
complicated scattering environments.

In optics, SLMs have been used to control waves under
strong scattering conditions for some time. Applications
range from focusing through general disordered media
[7,8] to sophisticated biomedical imaging instruments that
fall under the umbrella of adaptive optics [9,10]. In the
last several years, spatial microwave modulators in the
form of programmable metasurfaces have also become
widely available. Programmable electromagnetic metasur-
faces are metamaterial sheets that can modify their local
surface impedance over unit cells (meta-atoms) that have
a sub-wavelength characteristic size. They have emerged
as powerful tools for shaping waves inside complex
microwave cavities [11–19].

Metasurfaces are not limited to shaping only elec-
tromagnetic waves. In seismology, control over surface
acoustic waves has been demonstrated using metasur-
faces made of elastic metamaterials for Love waves
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(horizontally polarized) [20] and Rayleigh waves (con-
taining both longitudinal and transverse motion) [21]. In
the case of quantum waves, a metasurface created from
an array of trapped neutral atoms was used to manipu-
late light at the quantum level [22]. While the underlying
physics of these metasurfaces is vastly different, the over-
all operation and process of wave interaction is essentially
the same, implying that strategies for wavefront shaping in
one domain can be readily adapted to another.

Wavefront shaping techniques with metasurfaces have
been well studied; however, control in complex reverber-
ating environments still relies on simple, online brute-force
optimization methods. While these approaches work, they
require a large number of iterations to reach convergence,
are rarely guaranteed to achieve a global minimum, and
can produce undesirable scattering configurations through
the intermediate steps of the optimization process. Wave-
front reconstruction, or estimating the wavefront on the
basis of metasurface commands, is therefore a critical
capability for enabling practical wavefront control appli-
cations.

In this paper we use a binary programmable metasurface
to shape radio-frequency electromagnetic waves inside a
chaotic microwave cavity, and present a deep-learning net-
work that solves the wavefront reconstruction problem,
enabling real-time operation once trained. We show that
the deep-learning network achieves an accuracy exceed-
ing 99%. This high success rate is achieved with a limited
amount of training data, requiring the collection of far
fewer sets than the number of possible combinations of
metasurface commands. A conceptual view of our tech-
nique is given in Fig. 1. The metasurface is placed in a
reverberant scattering environment, with a signal injected
at port 1, and the resulting field measured at a specific point
of interest (port 2). The environment is defined by irregular
walls and inclusions and is probed by waves with wave-
lengths much smaller than the characteristic dimension of
the enclosure.

We emphasize that our method is enabled by the use
of a reverberant environment, which allows the metasur-
face to interact with multiple ray trajectories, often more
than once. A reverberant environment provides two major
capabilities that are not present in nonreverberant environ-
ments. First, the ability to control the distribution of wave
fields at arbitrarily chosen locations inside the cavity is
enhanced. This allows the use of relatively small metasur-
faces; for example, in our configuration, the metasurface
covers only approximately 1.5% of the total surface area
of the cavity. Second, the requirement on establishing a
line-of-sight path between the metasurface and the ports is
removed, which allows the location of the metasurface to
be arbitrarily chosen, increasing the flexibility and versa-
tility of the approach. We anticipate that realization of this
concept will help usher in an alternative era of smart radio
environments, as well as allow on-demand creation of

microwave cold spots to protect sensitive electronic com-
ponents and coherent perfect absorption states for wireless
power transfer.

II. WAVEFRONT CONTROL IN REVERBERANT
ENVIRONMENTS

Microwave experiments show that programmable meta-
surfaces can provide fine control over the scattering param-
eters of a cavity, with the most recent work demonstrating
perfect absorption [16] and coherent perfect absorption
[18,19] states inside the cavity. The relationship between
metasurface commands and cavity scattering parame-
ter responses is extremely complicated (there are 1018

possible configurations of the metasurface in our case).
Therefore, optimization of the metasurface is typically
handled through brute-force trial and error or stochastic
search algorithms [18,23,24]. As discussed in Appendix
A, rapid and accurate wavefront reconstruction techniques
that solve the inverse problem between measurements and
metasurface commands are necessary to realize practi-
cal intelligent wavefront shaping systems. Conventional
methods fall apart in complex scattering environments
with binary metasurfaces; however, the inherent complex-
ity makes it an ideal place to utilize deep learning. Ma et
al. explore the use of deep-learning networks with wave
chaotic systems, demonstrating the ability to successfully
distinguish between different types of wave chaotic cav-
ities through the measured S-parameters [25]. We now
tackle a more difficult problem, identifying a set of meta-
surface commands required to achieve a specific wave
scattering condition, even for cases where that set of
commands has not been previously encountered.

Deep learning has been successfully used to design
metasurfaces for wavefront shaping applications in both
the photonic and microwave domains [26–37]. However,
most of the publications so far have focused on designing
and arranging the individual unit cells of the metasurface
for static use cases. Active deep-learning approaches with
programmable metasurfaces have been demonstrated for
microwave imaging applications [38–43]. Li et al. use a
two-bit coding metasurface to generate radiation patterns
for a machine learning algorithm that detects and classifies
human movement [38,39]. Del Hougne et al. start with a
pair of metasurfaces as a transmitter and receiver to feed
a dense neural network that detects and classifies objects
in a learned integrated sensing paradigm [40,41]. Further
research by this group used a dense neural network to clas-
sify the position of a scattering object inside a complex
cavity with a metasurface acting as a coded aperture [42];
this work was recently extended to predict a continuous
position with sub-wavelength precision [43].

These examples demonstrate how a programmable
metasurface can enhance the processing power of a deep-
learning network for microwave imaging, but they do not
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FIG. 1. Conceptual view of a deep-learning-enabled programmable metasurface in a complex electromagnetic environment. Con-
structive and destructive interference between multiple propagation paths in a reverberating environment induces randomness in the
scattering parameters and scrambles electromagnetic waves that are injected at port 1. A reconfigurable metasurface is used to tune
the interference to create cold spots for protection of sensitive electronic components, realize coherent perfect absorption states for
long-range wireless power transfer, or unscramble the output fields to enable smart radio environments. The metasurface, along with
a sensing antenna at port 2, is coupled with a deep-learning network that provides control. Measurements are used as training data,
enabling the network to determine the control settings of the metasurface, and allowing the system to adapt to changing environmental
conditions on the fly. The metasurface is shown here as large relative to the cavity. In our configuration, however, the metasurface is
much smaller, covering only approximately 1.5% of the total surface area of the cavity.

leverage the deep-learning network for wavefront recon-
struction. This is a key component of intelligent wavefront
shaping, which has so far been an underexplored area of
research. Qian et al. use a simple dense network to enable
cloaking of an object [44], while Shan et al. use a two-
dimensional (2D) convolutional network to optimize the
steering of multiple beams [45]. Both cases utilize an
idealized testing environment inside an anechoic cham-
ber, where multipath reflections from the environment are
intentionally excluded. In addition, both cases are built
around a propagation path with a direct reflection off the
metasurface, which means that the metasurface interacts
with virtually all ray trajectories from the source to the
receiver.

As discussed in Appendix B, a single propagation
path eliminates redundancies from persistent short orbits
[46,47], reducing the measured correlation between meta-
surface configurations. These cases can be treated with
more traditional system identification techniques or sim-
ple neural network models. When the metasurface is
placed inside a complex reverberant scattering volume
[42,43], determining the relationship between metasurface
commands and scattering responses becomes substantially

more difficult due to the presence of multiple scatter-
ing paths. A reverberant scattering system is qualita-
tively different from an open system, and is characterized
by extreme sensitivity to initial conditions [48,49]. This
means accurate wavefront reconstruction must account for
chaotic behavior and be sensitive to small environmental
changes, as well as handle nonnegligible large ampli-
tude signal spikes that include phenomena such as rogue
waves [50]. This difficulty is further compounded as we
wish to optimize the metasurface response over a wide
bandwidth or even over multiple separated bandwidths
simultaneously.

The reverberating nature of the cavity enables opera-
tion with a smaller metasurface than would be possible
in a nonreverberating environment. Longer reverberation
times (lower cavity losses) mean that the rays will survive
longer in the cavity, resulting in more reflections from scat-
tering objects and more ray trajectories that interact with
the metasurface, often multiple times. Longer reverbera-
tion times then provide the metasurface more flexibility
in controlling constructive and destructive interference at
the ports, allowing for larger relative changes when tog-
gling metasurface states. We demonstrate this to be the
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case and show that the performance of the deep-learning
network degrades as the losses in the cavity increase
because the metasurface has a smaller relative impact on
the S-parameters. This is another distinction between a
reverberant environment and an open one, where environ-
mental losses only impact the signal magnitude through
absorption.

We further show that our trained network can success-
fully determine the metasurface configuration from the
measured scattering response in the cavity several days
after collection of training data. Measured S21 responses
with the same initial conditions inside a chaotic cavity
will change over time, a phenomenon known as scattering
fidelity decay [51–53]. Scattering fidelity decay is a prop-
erty of wave chaotic system, and its sensitivity to boundary
conditions and scattering environment. This is in contrast
to ray chaos and the sensitivity of bouncing ray trajecto-
ries to initial conditions in billiards. This decay means that
any deep-learning system that learns scattering responses
inside a chaotic cavity will require periodic retraining. As
discussed in Sec. VI, the fact that we are still able to deter-
mine the metasurface configuration accurately after several
days means our technique is operationally useful, as it can
function at a high level of accuracy for a long period of
time before requiring retraining. Our approach is robust
and highly accurate in determining metasurface commands
from measured cavity S21 spectra, providing an enabling
capability for intelligent wavefront shaping applications.
In addition, our method is general enough to operate in
arbitrary complex scattering systems and does not requires
a specifically engineered environment.

Our technique is achieved through the development
and combination of four major aspects: (1) adaptive con-
figuration of the metasurface unit cells by binning ele-
ments together to dynamically alter the relative size of
the elements; (2) representation of the complex system S-
parameters in a pseudo-2D “image” to promote extraction
of features that are correlated over both local and global
frequencies; (3) complex-valued deep-learning layers to
exploit both phase and amplitude information, accelerating
training and improving the accuracy when applied to com-
plex scattering environments; and (4) introduction of the
Terrapin Module to parallelize the deep-learning network,
promoting sparse feature representation and improving
training robustness.

III. EXPERIMENTAL CONFIGURATION

The complex ray chaotic cavity used for experimenta-
tion is in the same configuration as used in our previous
work [18]. It has a volume of approximately 0.76 m3 and
includes three ports, with ports 1 and 3 used to inject sig-
nals and port 2 used for scoring. The cavity configuration
and experimental schematic are shown in Fig. 2. Each port
is connected to an ultra wideband antenna, and the nominal

(a)

(b)

FIG. 2. Cavity configuration. (a) Experimental schematic of
the cavity, showing the metasurface installed on the cavity walls,
the locations of the three ports, the line-of-sight (LOS) block to
prevent direct transmission between port 2 and ports 1 and 3,
and the mode stirrer that is controlled by a stepper motor through
an Arduino. Also shown are the network analyzer, phase shifter,
control laptop, and router. (b) Photograph of the interior of the
cavity showing the components from the schematic as well as
the irregular scatters that were installed on the cavity walls.

measurement window is 3–4 GHz. An Arduino controlled
mechanical mode stirrer is included to allow collection of
an ensemble of cavity realizations. The experimental setup
is controlled by a laptop, with an Agilent N5242A net-
work analyzer used to measure cavity S-parameters. To
reduce the cavity symmetry, irregular scattering objects
were installed on the walls. Additional details on the cavity
are provided in Appendix C.

Experiments were carried out over several months, with
the cavity placed in a heated and air-conditioned basement.
While there were many commercial devices in the vicinity
that emitted signals within the measurement window, we
found the cavity to be well isolated. When not actively in
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use, such as in between experimental runs, the metasurface
was powered off.

The metasurface installed on an interior wall was fab-
ricated by the Johns Hopkins University Applied Physics
Laboratory. It is designed to operate in the frequency
range of 3–4 GHz, and contains 240 binary meta-atoms
(LC resonators) arranged in a rectangular grid of 10 ×
24 elements. Each element has a characteristic length of
approximately λ/6 and is switched by a GaAs transistor
amplifier to one of two states (0 or 1), changing the phase
of the reflection coefficient by approximately 180◦ [54].
The metasurface covers a small region of the interior sur-
face area of the cavity (1.5%), and intercepts only a limited
number of rays.

The goal of our deep-learning network is to enable
wavefront reconstruction inside a complex cavity. The net-
work will accept given S21 spectra from 3–4 GHz and
accurately determine the metasurface commands neces-
sary to closely realize that specific scattering response.
The relatively small size of the metasurface and its unit
cells leads to high correlation between system scattering
responses with minor changes in metasurface commands,
which means the inverse problem is ill-posed. Deng et
al. recently introduced a neural-adjoint approach for solv-
ing the ill-posed inverse problem of designing unit cell
geometries to match specified absorption spectra [55]. In
this case, a fully connected deep-learning network was
used to model the forward problem, acting as a Green’s
function to predict the spectrum from a given design. The
inverse problem was then solved iteratively, driving the
design along an estimated gradient towards the optimal
solution. As discussed in Appendix A, gradient methods
work best for a continuous or near continuous solution
space rather than a binary one such as ours; however,
the adjoint method from [55] can be adapted into a rein-
forcement learning approach [56]. In addition, inside a
chaotic reverberating environment, the spectra will have
more structure, resulting in higher-frequency oscillations
or local features that must also be learned. Therefore, we
require a different deep-learning approach.

IV. DEEP-LEARNING NETWORK DESIGN

The metasurface has 2240 possible combinations of com-
mands. To reduce the dimensionality, we introduced the
concept of binning neighboring unit cells as discussed in
Appendix D. Groupings consisting of 2 × 2, 3 × 3, and
5 × 4 elements were chosen. Binning is an important capa-
bility that allows us to adapt the size of an effective element
to the underlying scattering system. This is one of the
major contributions of our work.

The primary limitation of our approach is that we are
not guaranteed to be able to generate any arbitrary S21
response, as a configuration of the metasurface that pro-
duces that response does not necessarily exist. The small

size of the metasurface relative to the cavity limits its
ability to interact with all possible ray trajectories, empha-
sizing the importance of a binning capability to adapt the
effective pixel size to the environment. This limitation is
therefore a function of the system configuration, and not
the deep-learning network. The small relative size of the
metasurface does represent a realistic configuration for
practical smart radio environments, however.

An important step for deep learning is preparation of
the measured data. The goal here is to represent the data
in a basis set that can be ingested by the neural network
architecture. The raw data consist of M sets of com-
plex two-port S-parameter values, each containing 32 001
points measured over a 3–4 GHz window. We are inter-
ested in the relationship between metasurface commands
and transmission between the ports, so we select S21 as
the primary variable of interest. The measured data con-
tain local and global correlations, both of which must be
captured by the deep-learning network. We can exploit
the local correlations with one-dimensional (1D) convo-
lutional neural network (CNN) layers, but would like the
individual windows to cover a smaller bandwidth. Our pre-
vious work showed diminishing returns for optimization
over bandwidths greater than 10 MHz [18], so 10 MHz
provides a reasonable limit for the local window size. We
therefore extract the complex S21 in 10 MHz frequency
windows at 100 distributed center frequencies to provide
100 feature vectors containing 321 points each. A repre-
sentative data set is shown in Fig. 3(a), with only 50 feature
vectors used for illustration. The data are organized into a
three-dimensional structure of M sets of data × F local fre-
quencies × N features, or 10 000 × 321 × 100 for the 2 ×
2 binning configuration. Each data set takes on a pseudo-
2D format with a 321 × 100 pixel “image” as shown in
Fig. 3(b). Local features in the 10 MHz frequency win-
dows (over the F dimension) will be extracted by 1D CNN
layers and global features (over the N dimension) will be
extracted by the overall deep-learning network architec-
ture. The overall architecture then acts as a dense or fully
connected layer from the perspective of the global features.
The pseudo-2D format and its ability to capture both long-
range and short-range correlations in frequency provides
the second major aspect of our approach. Additional details
on data collection are provided in Appendix E.

The output values of the deep-learning network (equal in
number to the number of binned metasurface elements) are
floating-point numbers rather than binary numbers and can
be interpreted as the probability that a given element in the
metasurface is active (set to 1). The determined commands
are then found by rounding the outputs to either a 1 or a
0. Inspection of the raw (unrounded) outputs allows us to
assess how correct the deep-learning network was, or how
confident the network was in the result. A discussion of the
different types of neural network layers used is provided in
Appendices F and G.
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(a) (b)

FIG. 3. Data preparation example. The deep-learning networks use complex amplitudes; however, only the magnitude is shown here
for illustrative purposes. (a) Raw |S21| data vs frequency showing 50 local windows highlighted in gray. The actual data preparation
uses 100 local windows; only 50 are shown here for clarity. The data were collected over a 1 GHz measurement window with 32 001
points and each local window (highlighted in gray) has a bandwidth of 10 MHz or 321 points. (b) Extracted |S21| data (in log scale)
in a pseudo-2D format as a 321 × 50 pixel “image.” The data are represented as center frequency (over the full 1 GHz measurement
window or N dimension) vs local frequency (over the 10 MHz local window or F dimension). The deep-learning network will use
1D convolutions to extract features in the 10 MHz local frequency windows (y axis) and use the relationships between convolutional
filters to capture global correlations over the full 1 GHz measurement window (x axis).

As described in Appendix H, the training data sets are
randomly shuffled and then split into 75% training data and
25% validation data. At each step (epoch), validation of the
trained model is performed by testing the model with a new
set of data not present in the training set.

Complex-valued multiplicative layers have been used
to invert propagation through multimode fibers [57,58],
but have not previously been used for wavefront recon-
struction. Unfortunately, as discussed in Appendix I, there
are no officially supported complex-valued modules in
any of the major deep-learning frameworks. Multiplicative
layers are straightforward to implement, but more com-
plicated modules, such as convolutional layers, are not.
For the research described here, we leverage the open
source complexPyTorch library [59] as the basis for our
complex-valued network layers.

The added complexity resulting from placing the meta-
surface inside a chaotic cavity requires a correspondingly
complicated deep-learning network to extract the rele-
vant features. Rather than only designing progressively
more intricate network topologies, we can also intro-
duce complex-valued layers [60], which serve as the
third major aspect of our approach. The wave scattering
phenomenon is fundamentally complex-valued, so using
complex-valued layers allows the network to exploit both
phase and amplitude information and better match the
underlying physical system.

To demonstrate the impact of utilizing complex-valued
network layers, we performed an experiment comparing
three different architectures: (1) a complex-valued network

that processes the complex-valued S-parameters and con-
verts the result to a magnitude at the end of the network
[Fig. 4(b)]; (2) a hybrid network that processes the real
and imaginary components of the S-parameters indepen-
dently and then combines them through a root-sum-square
operation at the end of the network [Fig. 4(c)]; and (3) a
real-valued network that operates on the magnitude of the
S-parameters [Fig. 4(d)].

Ten separate training runs were performed with each
architecture on the same set of input data. Panels (e)–(g) of
Fig. 4 show the evolution of the accuracy of network over
the validation data set and demonstrate that the complex-
valued network layers are ultimately able to achieve a
higher accuracy than the hybrid or real-valued network
layers and exhibit more stable training behavior. Train-
ing instability manifests as wide variations in the accuracy
response, resulting in certain runs not effectively learning
until much later (several cases for the real-valued network
are still learning after 500 epochs). It indicates that the
hybrid and real-valued networks are much more sensitive
to initial weights or ordering of the data sets after shuffling
than the complex-valued networks.

As described in Appendices J and K, the 5 × 4 binning
case performed extremely well using a straightforward
sequential CNN architecture. After training, we were able
to accurately realize 100% of the target responses over
both the training and validation sets. Unfortunately, the
purely sequential architecture of the network did not work
as well for the 3 × 3 binning configuration (see Appendix
M). The increased complexity implies that we need a more
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(a)

(b) (c) (d)

(e) (f) (g)

FIG. 4. Training performance for different architectures. (a) Generic network architecture. The real and imaginary components of the
complex S-parameters are ingested by the network, with a real-valued bitstream provided at the output for metasurface commands. (b)
Schematic architecture for the complex-valued network showing that the magnitude operation only occurs at the end of the network.
(c) Schematic architecture for the hybrid network showing that the real and imaginary components are processed independently and
combined at the end. (d) Schematic architecture for the real-valued network showing that the magnitude operation occurs at the
beginning of the network. (e)–(g) Evolution of the accuracy over the validation data set for the various architectures with a mean
accuracy of 99.2% for the complex valued network (e), 97.4% for the hybrid network (f), and 91.4% for the real-valued network
(g) cases that successfully trained. The dashed line shows 95% accuracy, and the insets show closeups of the accuracy evolution
from epochs 300–500 in the range of 90%–100%. This figure demonstrates that the complex-valued network achieves better overall
accuracy with more stable training performance than the other architectures.

complex network, so we turned to approaches successfully
used in modern image classification, specifically inception
modules [61,62]. As discussed in Appendix L, we modi-
fied the general architecture to perform 1D convolutions
over the 10 MHz local frequency windows. The 1D convo-
lutional filters then extract local features over the 10 MHz
windows, while the relationship between the filters acts as
a dense or fully connected layer, extracting global features
over the full 1 GHz measurement window. The final ver-
sion, which we refer to as a “Terrapin Module,” is shown
schematically in Fig. 13 and provides the fourth and final
major technical contribution of our approach.

With a deep-learning network containing four Terrapin
Modules in series, we were able to get excellent perfor-
mance for the 3 × 3 binning configuration with only 4000
sets of training data, as discussed in Appendix M. The
2 × 2 configuration required 10 000 sets of data for a sim-
ilar level of performance (see Appendix N). The smaller

effective elements in this configuration produce responses
with a larger degree of correlation. Thus, the network
require more data in order to learn and distinguish the
more subtle relationships between metasurface command
configurations and scattering matrix responses, S21(f ).

Training is performed in a parallelized fashion over
all the training data at once, for example, for our com-
putational resources, taking approximately 4 h to col-
lect a sufficient set of data and train the deep-learning
network. Testing, however, is performed on single shot
measurements and takes less than 1 s to measure the
S21 response and make a determination of the metasur-
face commands, enabling real-time operation. In con-
trast, the iterative approach in our earlier work [18]
required approximately 300 measurements to converge to
a desired configuration, taking approximately 10 min to
reach the answer for each configuration. Online iterative
optimization does not require training, but may produce
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undesirable configurations due to the randomly applied
perturbations. When time is available for offline training,
the deep-learning approach is preferred.

V. RESULTS

The primary objective of this work is to demonstrate that
deep wavefront shaping is a viable technique for wave-
front reconstruction inside complex scattering environ-
ments, enabling intelligent wavefront shaping in a chaotic
cavity. In this section, we shown how our deep-learning
approach accurately determines metasurface commands
from measured cavity scattering parameters.

Training results for the 5 × 4 and 3 × 3 binning con-
figurations are provided in Appendices K and M, while
training results for the 2 × 2 binning configuration are pro-
vided in Appendix N and shown in Fig. 5. The training
data consist of 10 000 random realizations of metasurface
commands, representing an extremely small fraction of the
1.2 × 1018 possible configurations. The data were split into
7500 sets for training and 2500 sets for validation to ensure
the validation process is unbiased. The evolution of the
loss function is shown in Fig. 5(a) and the evolution of the
accuracy is shown in Fig. 5(b). The loss function was cho-
sen as the mean absolute error, or the L1 norm, between
determined and actual metasurface commands. Accuracy
is the fraction of sets that was determined without error and
provides a more conservative estimate of performance. The
variation around epoch 45 is due to choosing an aggressive
initial learning rate, and the impact of reducing the learn-
ing rate on a plateau can be seen at epoch 55. These panels
demonstrate that we were able to obtain high accuracy and
a small loss function for both the training and validation
data sets.

The trained model did not have perfect accuracy but was
able to determine 2443 out of 2500 sets in the validation
data without error, for an accuracy of 97.7%. One set had
2 errors and 56 sets had a single error, as shown in Fig.
5(c). A comparison of the determined and true commands
is shown in Figs. 5(d), 5(e), 5(g), and 5(h). These pan-
els show that for the worst case set with two errors, the
network was not highly confident in the results as the erro-
neous determined command probabilities were 0.41 and
0.73. Finally, example scattering responses are shown in
Figs. 5(f) and 5(i), which demonstrate both the complexity
of the S21 responses and the fact that the difference between
the measured and predicted responses is generally at least
20 dB lower than the signal magnitudes themselves.

To further validate the trained deep-learning network,
we adopted the online, closed loop configuration as
shown in Fig. 6(a). Commands were applied to the
metasurface and the S21 response was measured and
then passed through the trained deep-learning model to
verify accuracy. This provides a third set of data not
seen during training (or the initial validation). When the

deep-learning-determined commands had errors, the deter-
mined commands were applied to the metasurface so
that the difference in S21 responses could be computed.
We define the difference, �S21, between two measured
S21 responses, Sa

21 and Sb
21 through the L2 (Euclidean)

norm, ||S21(f )||2 =
√∑

f |S21(f )|2. The summation is
taken over the full measured frequency range (3–4 GHz)
and �S21 is defined as

�S21 = 2
||Sa

21(f ) − Sb
21(f )||2

||S0
21(f )||2 + ||S1

21(f )||2
. (1)

The normalization factor here is determined by the aver-
age of the L2 norms of the active commands (all 1s), S1

21,
and the inactive commands (all 0s), S0

21. To understand
how �S21 depends on the difference between commands,
we first identified the minimum Hamming distance for
each of the 10 000 sets in the training data. The Hamming
distance is simply the number of elements that are differ-
ent between two sets of commands. It is a useful metric for
comparing command sets, but does not include scaling or
correlation based on position; in some cases, the impact of
toggling an element in the center may be significantly dif-
ferent than the impact of toggling an element on the edge
of the metasurface.

The smallest Hamming distance between the training
data sets ranged from a single element to 19 elements (out
of 60). A series of whisker box plots showing �S21 for
the various Hamming distances is shown in Fig. 6(b). The
general trend shows an increase in �S21 with an increase
in the Hamming distance. While the relationship is non-
linear, the dynamic range in �S21 for Hamming distances
up to one-third of the total number of elements is large,
approximately an order of magnitude.

Validation of the deep-learning network in the configu-
ration shown in Fig. 6(a) was performed periodically after
collecting the training data, and the results are shown in
Fig. 6(c) at 2 h, (d) at 36 h (1.5 days), and (e) at 72 h
(3 days), with the metasurface powered off between each
validation test. Over time the scattering environment is
expected to “age” and systematic changes to the scat-
tering environment will occur. The blue diamonds show
cases where there was a single error, and the black dots
show cases where there were two errors. Each online val-
idation experiment showed approximately 95% accuracy
and the resulting �S21 for errors was small compared to
the observed statistical extent of �S21 for single-element
Hamming distances. This suggests that even when the
deep-learning network is unable to determine the com-
mands completely accurately, the resulting difference in
S21 is very small. As shown in Appendix O, the accuracy
was still greater than 85% after 120 h (5 days), but dropped
to approximately 65% after 9 days.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. Deep-learning performance with complex-valued layers for 2 × 2 binning. (a) Evolution of the loss function for the training
and validation sets over 100 epochs. The learning rate is reduced at epoch 55, inducing an additional reduction in the loss function.
The initial learning rate was aggressive, resulting in a large variation in the validation loss function between epochs 45 and 50. (b)
Evolution of the accuracy for the training and validation sets over 100 epochs; the dashed black line identifies 95% accuracy. (c)
Number of errors over the validation set for the trained model, showing a total of 58 errors and 97.7% accuracy. The maximum
number of errors in a single set was 2 (out of 60 elements), which occurred once. (d) Determined commands for validation set No.
2311 showing the output from the deep-learning network. (e) True commands for validation set No. 2311 showing what was actually
applied to the metasurface. (f) Example scattering responses for online validation showing the measured and predicted S21 responses.
(g) Determined command probability for validation set No. 2311, showing the raw outputs from the deep-learning network prior to
rounding. This panel shows that the two elements determined incorrectly have command probabilities of 0.41 and 0.73, meaning the
network was not highly confident in the result. (h) Errors or incorrectly determined commands for validation set No. 2311, showing the
two elements that were determined incorrectly. (i) Prediction errors or difference between the measured and predicted S21 responses.

The number of errors and number of cases with more
than one error increase with time, showing the “aging”
effect of the cavity, which can be quantified through the
concept of scattering fidelity. Scattering fidelity is the nor-
malized correlation as a function of time between two
cavity responses with the same initial conditions [63].
Because a chaotic cavity is sensitive to small changes
in the boundary conditions, such as volume perturba-
tions, the scattering fidelity will decay over time [51–
53]. Loss of scattering fidelity means that the accuracy
of any trained deep-learning network has a finite life-
time, so we must periodically retrain the network on new
training data to maintain accuracy. In our case, we have
demonstrated that the deep-learning network can deter-
mine metasurface commands with high accuracy (over
95%) for at least 72 h (3 days) after the initial train-
ing data collection, and with reasonable accuracy (over
85%) up to 120 h (5 days) after the initial training data
collection. Large variations in environmental conditions,
such as temperature or humidity, will introduce larger

perturbations and more rapidly degrade the scattering
fidelity.

An additional set of experiments showing the perfor-
mance of the deep-learning network with different cavity
reverberation times is provided in Appendix P and Fig. 17.

VI. SUMMARY AND DISCUSSION

In this paper we demonstrated the use of a deep-learning
network for wavefront reconstruction, enabling intelligent
wavefront shaping in complex reverberant environments.
Major aspects include complex-valued deep-learning lay-
ers that exploit both phase and amplitude information,
binning of the metasurface elements, a pseudo-2D data for-
mat that allows features to be extracted over both narrow
and wide bandwidths, and a Terrapin Module that enhances
the receptive field, providing width and depth to the net-
work. While our configuration leverages a binary (1-bit)
tunable metasurface, it can be adapted for a continuous
device, such as a varactor, by replacing the output sigmoid
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(a) (b)

(c) (d) (e)

FIG. 6. Online performance verification. (a) Closed loop validation configuration. Commands were applied to the metasurface inside
the cavity, the corresponding S21 response was measured on the PNA, and the results were passed through the trained deep-learning
network. Errors for the trained model were then measured to determine the difference in S21, �S21, between the two command sets.
(b) �S21 statistics for the minimum Hamming distance across the 10 000 sets from the training data. Whisker plots are given for the
smallest Hamming distance for each case, and show the mean value, 25th and 75th percentiles, and maximum and minimum values.
(c) through (e) �S21 for online validation sets taken a specified time after the training data were collected. The shaded regions show the
extent of the single-element Hamming distance whisker box plot from panel (b). The grey region shows the full range from maximum
to minimum, and the red region shows the 25th and 75th percentiles. The blue diamonds indicate cases with a single error, while the
black circles indicate cases with two errors. These panels show that the �S21 for errors is very small, and in the lower region of the
statistics covered by observed cases with single-element Hamming distances. (c) Validation 2 h after collecting training data; 2000
sets of commands were tested, with 86 errors for an accuracy of 95.7%. (d) Validation 36 h after collecting training data; 2000 sets of
commands were tested, with 80 errors for an accuracy of 96%. (e) Validation 72 h after collecting training data; 2000 sets of commands
were tested, with 107 errors for an accuracy of 94.7%.

activation function with a rectified linear unit activation
function and then discretizing the signal to the desired
resolution.

One of the primary limitations of traditional deep learn-
ing is the amount of data required to train the networks.
This is especially concerning in light of the fact that loss
of scattering fidelity requires periodically collecting new
training data. We have demonstrated the ability to train
highly accurate networks with a limited amount of training
data, requiring far fewer sets than the number of possible
combinations of commands. We have also demonstrated
that the accuracy can be maintained for a period of at least
several days, and is successful with varying amounts of
loss in the cavity. This indicates that successful training
on a reduced amount of data is possible, provided it is
sufficiently diverse. Diversity in both the metasurface com-
mands and the measured responses is then a key aspect in
setting up any potential autonomous system.

Several concerns must be addressed to enable practical
fielded hardware systems. First, the sensing component

must be reduced in cost and size. The availability of
software defined radio (SDR) architectures presents an
ideal path here, with many inexpensive platforms read-
ily available. Compact devices such as the bladeRF
[64] can replace the bulky network analyzer. SDRs
have limited instantaneous bandwidth, typically 10–20
MHz, so modifications would be required to the pseudo-
2D data representation. Second, processing large deep-
learning models on power-hungry graphical processing
units (GPUs) may exceed the allowable footprint in
terms of both cost and power consumption. Deep-learning
models can be compressed by pruning and quantiza-
tion [65], and the explosion of edge intelligence for
connected devices in the Internet of Things is leading
to more efficient embedded deep-learning systems. An
example is the Jetson series of embedded GPUs from
NVIDIA; the currently available TX2 series can provide
up to 1.26 trillion floating-point operations per second
on a 256-core GPU while consuming only 10–20 W of
power [66].
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In closing, we have shown that deep-learning-enabled
wavefront reconstruction provides an important step
towards realizing intelligent reconfigurable metasurfaces
for smart radio environments. Potential applications in
the domain of electromagnetics include wireless power
transfer, protection of sensitive electronic components,
optimization of wireless networks, micromanipulation of
objects, and nonlinear time reversal. Our technique is
applicable to general wave chaotic scattering systems and
is not strictly limited to electromagnetic waves. Adopting
this technique to control the system scattering response
with metasurfaces that interact with seismic waves [20,21]
or quantum waves [22] will unlock many innovative appli-
cations for wave chaotic systems.
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APPENDIX A: WAVEFRONT RECONSTRUCTION
AND CONTROL

Wavefront control has a rich history and has been well
studied from the perspective of adaptive optics. Conceived
by Horace Babcock in 1953 [67], and realized in the
1970s [68], adaptive optics provides a method of correct-
ing wavefront aberrations induced by propagation through
random media. It has been successfully used in a diverse
array of applications including astronomical imaging [69],
biomedical imaging [70], high-energy laser propagation
[71], free-space optical communications [72], quantum
networking with satellites [73], and laser processing of
materials [74].

Adaptive optics systems typically employ reflective
deformable mirrors that provide mechanical phase com-
pensation [75,76]. Conventional deformable mirrors are
built with ferroelectric actuators [77] with spacing as
small as 5 mm, though monolithic deformable mirrors
manufactured from a block of lead magnesium niobate
material can have 1 mm spacing between actuators [78].
Micro-electrical-mechanical-system mirrors using electro-
static actuation have made great strides over the past
decade [79,80] and are very competitive with conventional
deformable mirrors, particularly where a large actuator
density is desired. Refractive liquid crystal devices have
also been proposed and developed [81,82], but tend to be
slow and are uncommon outside of microscopy [10] or
laser processing [74].

The availability of inexpensive reconfigurable metasur-
faces has driven research into a field known as wavefront
shaping [7,8,12,83–85]. While there is not a strict conven-
tion or definition, adaptive optics is generally associated

with controlling distorted wavefronts for a single propaga-
tion path while wavefront shaping is generally associated
with controlling (or shaping) a combination of multiple
scattered wavefronts. We will adopt this convention here
and refer to adaptive optics and wavefront shaping in gen-
eral as wavefront control. While many applications are
built around scattering systems possessing time- reversal
symmetry (TRS), the presence of TRS is not a requirement
for all wavefront control systems.

Conventional adaptive optics systems measure the
wavefront directly and use an operator, called the recon-
structor, to solve the inverse problem between measure-
ments and control signals. Wavefront reconstruction is at
the heart of any wavefront control system. The process is
generally indirect, as the reconstructor evaluates the wave-
front in the basis of command signals, rather than explicitly
in phase. Wavefront reconstruction is a specialized area of
system identification [86], and relies heavily on methods
for solving inverse problems.

For a linear system, or one that can be linearized, the
standard reconstructor, R, is a regularized optimal Wiener
filter given by [87]

R = [
BTC−1

n B + W + BTC−1
ϕ B

]−1
BTC−1

n . (A1)

Here, Cn is the covariance matrix of the measurement
noise, Cn = 〈

nTn
〉
, Cϕ is the covariance matrix of the

environmental disturbance, Cϕ = 〈
ϕTϕ

〉
, W is a weight-

ing/regularization matrix, and B is a system configuration
(geometry) matrix that relates control signals to wave-
front measurements. Both Cn and Cϕ are defined in sensor
space, while W is defined in command space.

The inverse problem is often ill-posed due to singular-
ities or the presence of highly correlated responses with
different commands [88], which effectively means we do
not have enough information to solve the problem. We can
add the necessary information through a process known
as regularization. The weighting matrix, W, in Eq. (A1)
implicitly provides Tikhonov regularization, which acts
as a spectral filter on the singular values [89,90]. W can
be the identity matrix to raise all the singular values, or
a projection matrix to suppress specific modes as they
may either induce singularities or expend control energy
in ways we wish to avoid. Using the inverse of the envi-
ronmental covariance matrix, C−1

ϕ , preconditions the solu-
tion towards expected spatial modes with the appropriate
spatial statistics.

For nonlinear systems, we can apply iterative methods
to handle the reconstruction process. These are typically
Krylov subspace methods such as the conjugate gradient
method [89,91,92]. Regularization can be applied through
Landweber iteration, where the gradient is allowed to
decay with a relaxation parameter [89,91]. In this case,
the iterations are performed “offline,” meaning that each
iteration is evaluated numerically on the measurements.
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The convergence rate is therefore only limited by the
computational power we can throw at the problem.

Wavefront reconstruction is viable for some metasurface
applications, but depends on being able to solve the inverse
problem. Complex environments include uncertainties in
determining the system configuration (B matrix), and mul-
tiple reflection paths create intricate interference patterns
at the antennas, producing chaotic fluctuations [93,94]. In
addition, short orbits that manifest as persistent features
in the ensemble [46] are not removed. This leads to a
complicated relationship between metasurface commands
and cavity scattering parameters. For a metasurface that
is small relative to the cavity, the effective strength of the
metasurface commands on the cavity scattering parame-
ters is reduced. This results in high correlation between
measurements taken with different sets of commands and
creates problems for uniqueness, as many potential solu-
tions are extremely similar. In addition, the scattering
process is linear, but the relationship between metasurface
commands and measured scattering parameters is not nec-
essarily so, particularly for measurements in the temporal
domain. In these extreme scattering environments, we are
limited to partial information and may not be able to define
the system, let alone determine the inverse. This leads to
model-free control approaches that do not require knowl-
edge of the system configuration, and bypass an explicit
wavefront reconstruction step altogether.

Early metasurface control approaches used brute-force
trial and error, toggling every element or combination of
elements [23,24]. This guarantees that a global minimum
is reached, but becomes infeasible with large numbers of
elements. The simplest practical approach is an extension
of iterative multidither techniques in adaptive optics [95],
where, at the kth iteration, the algorithm updates a trial
command vector, a∗, with a small perturbation, δa, so that

a∗
k+1 = ak + δak. (A2)

The impact on performance is evaluated through a met-
ric or cost function, J , that is positive and real-valued,
and dependent on both the command vector and the envi-
ronment, E . If the cost function, J

(
a∗

k+1, E)
, is improved,

the trial command vector becomes the new command vec-
tor, ak+1 = a∗

k+1. Otherwise, the trial command vector is
rejected and a new trial command vector is generated.
The iterative process continues until either a specified
number of iterations, T, are performed without improving
the metric, or the cost function reaches a predetermined
value, at which point we claim convergence. While simple
to implement and not reliant on knowledge of the sys-
tem configuration, the dithering approach is by no means
optimal.

Gradient-based approaches have proven extremely suc-
cessful for general stochastic optimization problems [96].
In a stochastic gradient descent (SGD) optimization, the

descent is performed by taking steps along the gradient of
the cost function with respect to the element command vec-
tor. The step size, γ , which may or may not depend on the
iteration, determines how quickly the algorithm descends,
and is sometimes referred to as the “learning rate.” Tun-
ing the step size is an important aspect of SGD methods. If
γ is too small, the algorithm will take a long time to con-
verge and may not be able to escape a local minimum. On
the other hand, if γ is too large, the algorithm may become
unstable. The basic SGD is implemented as

ak+1 = ak − γk∇ak J (ak, E) . (A3)

In most cases, it is not possible to evaluate the gradient,
∇aJ , directly, so it must be approximated. The general
approach is to apply a small perturbation to the current
command vector and estimate the gradient from a one-
sided or two-sided finite difference. The perturbation is
applied to all elements of the command vector simultane-
ously (in parallel) to increase the convergence rate.

A specialty of wavefront control, known as wavefront
sensorless or target-in-the-loop adaptive optics [97], lever-
ages stochastic optimization in a sensor-agnostic manner,
indirectly evaluating the wavefront through a scalar cost
function, J . In target-in-the-loop approaches, the itera-
tions are performed “online,” meaning that each iteration
requires applying commands and measuring the result. The
convergence rate is therefore limited by the sampling rate
of the system.

Target-in-the-loop methods are not as easily analyzed
through modern multivariable control theory as conven-
tional methods, but they are highly applicable to the
problem of controlling metasurfaces in complex scatter-
ing environments. In particular, stochastic parallel gradi-
ent descent (SPGD) [98,99] has enjoyed great success in
target-in-the-loop adaptive optics systems. For SPGD, the
gradient is estimated from a one-sided finite difference,

∇aJ (a, E) ≈ [J (a + δa, E) − J (a, E)] δa−1. (A4)

The cost function is arbitrarily defined, allowing SGD
methods to be applied based on the specific need. It can
be an image quality metric such as Strehl ratio [98] for
imaging systems, signal strength for free-space optical
communications [100], transmission coefficient for cold
spot generation, or scattering matrix eigenvalue magni-
tudes for coherent perfect absorption (CPA) state realiza-
tion. Specific to the problem of controlling metasurfaces
in microwave wavebands, energy efficiency in terms of
bits per joule is an attractive metric for wireless net-
works [101]. Energy efficiency optimization using a recon-
figurable metasurface has been proposed and simulated
using both SGD and sequential programming in an open
scattering environment [102].
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SGD methods work well in principle for controlling a
metasurface. However, they begin to fail with coarse quan-
tization, which limits the ability to tune both the size of the
applied perturbation and the size of the step taken along the
gradient. In the extreme case of a binary (1-bit) metasur-
face, applying a perturbation boils down to simply toggling
or not toggling each element, so that for the nth element,
δan = {0, 1}. This leads to singularities in estimating the
gradient [Eq. (A4)], as well as approximation errors with
driving the solution along the gradient [Eq. (A3)], since the
resulting command must also be quantized to either 0 or 1.
While metasurfaces can be manufactured with more bits
of resolution for phase control, this increases complexity,
cost, and power consumption considerably, making them
less attractive for wide scale use. The capability of binary
metasurfaces has been demonstrated many times; these
devices can be expected to be utilized whenever power and
cost are drivers for implementation.

Since gradient-based approaches are problematic with
coarse quantization, dithering methods have dominated for
wavefront control applications with binary tunable meta-
surfaces. We can modify the dithering technique in Eq.
(A2) to use shaped or intelligent perturbations. When
the algorithm is initialized, we do not know where the
optimal commands are located with respect to the solu-
tion space. We would like to apply “larger” effective
changes that induce highly diverse responses with large-
scale global changes. As the algorithm proceeds, effec-
tively moving along the gradient, we want the changes
to become “smaller” and more localized. In this man-
ner, we are able to continue the optimization process
without wasting trials on global changes that are less
likely to improve the specific metric of interest. Finally,
once the algorithm has converged, we would like to be
able to make sure we are not stuck in a local mini-
mum.

This shaped perturbation approach was demonstrated
to successfully enable generating cold spots and realizing
CPA states for a binary metasurface with 240 elements
[18]. In this case, the perturbations were “shaped” by
changing the number of elements that were toggled (per-
turbed) each time the algorithm converged. The algorithm
cycled through perturbations that toggled 120, 48, 24,
12, and then 6 elements, with a convergence criterion
of T = 30 trials. This can also be thought of as a sim-
ple policy-iteration method of reinforcement learning [56].
To ensure the solution was not stuck in a local mini-
mum, the algorithm then entered a “single-element” phase
where three trial command vectors were generated at each
iteration that toggled the individual element, the nearest
neighbors of that element, and the diagonal neighbors of
that element. Cold spots were generated with this tech-
nique and provided 4–40 dB of suppression over a 1 GHz
frequency range and CPA states were realized and verified
with power absorption ratios approximately 106 [18].

While dithering allows us to provide wavefront control
in some capacity, a true wavefront reconstruction method
is desired. Deep learning may provide a viable approach, as
it has already been successfully demonstrated for general
ill-posed inverse problems [55].

APPENDIX B: COMPLEX SCATTERING
ENVIRONMENTS

Large enclosed spaces, such as offices or compart-
ments on ships or aircraft can act as “chaotic” reverberat-
ing chambers for short-wavelength electromagnetic waves
[103]. These complex scattering environments contain uni-
versal fluctuations with statistics governed by random
matrix theory (RMT) [49], as well as deterministic behav-
ior from the system-specific configuration of the ports
and short orbits (i.e., prompt, direct paths) between the
ports [46,104,105]. We often characterize complex scatter-
ing environments by their scattering matrix, or S-matrix,
which is a frequency-dependent transfer function matrix
containing the complex-valued reflection and transmission
coefficients between the ports. While useful for describing
the overall behavior, separating the universal and deter-
ministic features is often difficult when working with the
S-matrix.

An analytical approach known as the random coupling
model (RCM), has been shown to accurately predict fluc-
tuation statistics and allows separation of the universal
and deterministic contributions in a simple additive man-
ner [106,107]. Like RMT, the RCM leverages the random
plane wave hypothesis, which asserts that the chaotic wave
field is statistically equivalent to a random superposition
of plane waves [108]. The RCM is characterized by a sin-
gle parameter, α, that describes the losses in the system,
and is supported by wealth of experimental validation data
with chaotic microwave cavities [47,93,94,109,110]. The
behavior in large, thee-dimensional enclosures has also
been studied to understand these statistics and the potential
impact of high-power microwave attacks [103,111].

The RCM works in the impedance domain to sep-
arate the universal contributions; conversion between
impedance and scattering is handled through standard
bilinear transformations [112]. In the RCM, the fluctuating
impedance, Z̄, is defined as

Z̄ = j Im{Zr} + Re{Zr}1/2ξRe{Zr}1/2. (B1)

Here, Zr is the radiation or free-space impedance of the
ports and ξ is the fluctuating or universal component,
which is described by RMT [106]. For lossless systems,
ξ is a Lorentzian distributed random variable. With loss,
the distribution becomes much more complicated, but it is
well suited to Monte Carlo simulations [113].

The RCM has been shown to apply to fading statistics
in open systems, such as wireless communication paths,
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as well as closed systems, such as microwave cavities
[114,115]. A chaotic system is characterized by extreme
sensitivity to initial conditions and is qualitatively differ-
ent than an open one. In open systems, fading statistics are
often modeled with empirically fit distributions [116]: the
Rayleigh distribution when no line-of-sight path is present,
the Rician distribution when a strong line-of-sight path
is present, or the K distribution for propagation over the
ocean [117]. The limiting cases of Rayleigh and Rician
distributions are captured by the RCM with the σ param-
eter related to the loss parameter, as α = (

8πσ 2
)−1, and

the ν parameter equal to the magnitude of the short orbits
[114,115].

Operating in a rich scattering environment presents an
additional set of challenges in comparison to an open envi-
ronment. In addition to the fundamental difference in the
character of the fluctuations, in the semiclassical case or
short wavelength limit, we can look at the behavior of ray
trajectories. Specifically, we are interested in the change in
ray trajectories in response to a change in the metasurface
configuration. In an open system, there is a single ray (or
ray bundle) that is observed by the sensor, with at most a
single reflection off the metasurface. In a chaotic system,
that single ray will reflect off multiple walls and obsta-
cles in the cavity and possibly off the metasurface itself
multiple times before reaching the sensor. This creates a
cascading effect, so that the wavefront at the sensor is a
combination of constructive and destructive interference
of the multiple rays. The effect of these multiple inter-
ference paths is highly dependent on the configuration of
the cavity. For an open system, a wavefront reconstruc-
tion approach is only dependent on the geometry between
the sensor and the correcting device and is invariant to
environmental changes (provided the disturbances remain
within the dynamic range of the sensor and corrector).
Wavefront reconstruction is therefore very robust for an
open system. For a chaotic system, however, small envi-
ronmental changes can cause a wavefront reconstruction
technique that was previously successful to no longer be
viable, so that being “close” is not good enough.

To build environmental models for simulations, we
often need to make assumptions or approximations for
simplicity or computational tractability. We also need to
ensure that these assumptions are valid for the environ-
ments that are being modeled. Otherwise, the models may
neglect potentially significant effects. We will outline some
of the most problematic simplifying assumptions here.

The first simplifying assumption often made is that
the channels are perfectly known by the transmitter
(base station), so the only uncertainty in the environ-
ment is random thermal noise at the receiver(s). In com-
plex scattering environments, there is always uncertainty,
which can be significant. In addition, inside chaotic cav-
ities, measured scattering responses with the same initial
conditions will diverge over time, a phenomenon known

as scattering fidelity decay [51–53], which means that
perfect knowledge of a complex scattering environment
has a finite lifetime. This lifetime can be several days
in controlled conditions, but is sensitive to temperature
and humidity and will be reduced in scenarios such as
dense urban environments. Having only partial knowl-
edge of the system limits deterministic control approaches
and encourages learning algorithms. Scattering fidelity has
an impact here as well; as the scattering responses start
to diverge, any machine learning algorithm will require
periodic retraining.

The second simplifying assumption often made is that
the equivalent channel matrix is invertible, so the inverse
problem is well-posed. Complex scattering environments
generally contain short orbits, or prompt direct paths,
that are persistent across measurements [46,47]. These
short orbits induce correlations that are difficult for simple
machine learning approaches to unwrap and typically lead
to ill-posed inverse problems. Excluding multipath reflec-
tions and short orbits can overestimate the performance of
a given algorithm.

The third simplifying assumption often made is that
all the propagation paths are assumed to have a single
reflection off the metasurface, so direct line-of-sight and
multipath trajectories are not included. Channel fading is
then modeled with Rayleigh amplitude statistics. As stated
previously, in real-world systems, strong direct line-of-
sight paths induce Rician statistics and the presence of
multipath reflections drives statistics that are governed by
RMT [114,115]. Neglecting these statistics can lead to
algorithms that are not properly tuned. The longer tails
in the distributions lead to large amplitude signal spikes
that can degrade imaging performance or disrupt signal
processing algorithms.

Testing and verification are often done in anechoic
chambers to remove the environment and capture only
the impact of the reconfigurable metasurface. Anechoic
chambers are very good at covering up emissions prob-
lems, which become immediately apparent in reverber-
ation chambers [118]. A complex scattering system is
reverberant in nature, so mismatches that seem negligi-
ble in anechoic chambers may be significant in real-world
environments.

Finally, the metasurface is often assumed to have infinite
phase resolution, so quantization effects are not included.
Most commercially available metasurfaces have a sin-
gle bit of control, though custom devices with 2 bits of
control are becoming available [119–122], which means
quantization effects are important and likely significant. In
addition, as discussed in Appendix A, coarse quantization
can cause gradient-based controllers to fail, so neglect-
ing quantization effects may lead to poorly performing
real-world controllers. The metasurfaces are also ideal-
ized, with identical responses across all elements. In real
devices, manufacturing defects produce nonuniformities
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between the phase at each element, and the metasurface
may also include uncontrollable losses or gain.

Caution should be exercised when applying any of these
simplifying assumptions. Otherwise, they can overestimate
the performance or instill a false sense of confidence in a
particular approach.

A final characteristic of complex scattering environ-
ments to describe is coherent perfect absorption (CPA).
CPA is a special state of the scattering matrix where an
eigenvalue is driven to 0 and the electromagnetic energy
for the corresponding eigenvector is completely absorbed
inside the scattering system [123,124]. While practical
applications are still being developed, research has demon-
strated that a high fraction of the power was absorbed by
the target in a CPA demonstration using a tuned absorber
embedded in a lossy environment [124]. This work also
showed that the target absorbed virtually nothing in the
“anti-CPA” state, demonstrating a high degree of control
over absorption by a specific target in a CPA scenario.
An interesting future application is to utilize a generalized
Wigner-Smith operator [125] to apply a high absorption
fraction to a target with a modulated impedance or loss.

Full coherent multichannel CPA is more complicated
than single channel perfect absorption. However, one
advantage is the increase in delivered power by a factor
of N , where N is the number of channels. This is a signif-
icant gain and worth the difficulty of additional phase and
amplitude control.

APPENDIX C: CAVITY AND EXPERIMENTAL
CONFIGURATION

For the cavity discussed in the main paper, a line-of-
sight block is used to obstruct the direct transmission path
from port 2 to both ports 1 and 3. Also, ports 1 and 3 can be
driven either independently or collectively with a relative
phase shift provided by a NARDA phase shifter.

In the frequency range of interest, 3–4 GHz, the
Weyl formula [126] predicts approximately 8524 resonant
modes of the complex enclosure and the measured quality
factor of the cavity is roughly 5.5 × 103 [18]. A resonance
mode width is then around five times greater than the mean
mode spacing, which means there is some local overlap
between modes.

APPENDIX D: METASURFACE BINNING

The complexity of the cavity scattering responses, com-
bined with the enormous number of possible metasurface
command configurations (2240), means the direct devel-
opment of a deep-learning network for the full space of
240 elements is overly ambitious. To simplify the prob-
lem, we reduced the number of degrees of freedom of
the metasurface by binning together neighboring pixel ele-
ments, or grouping them together so that each element
in a group is always commanded with the same value.

No Binning
240 Elements

2 × 2 Binning
60 Elements

3 × 3 Binning
24 Elements

5 × 4 Binning
12 Elements

FIG. 7. Metasurface binning configurations. Binning config-
urations showing the relationship between the various options.
The shaded green region identifies a single effective element for
the specified configuration and the thin gray lines show the layout
of the unbinned elements. With no binning there are 240 ele-
ments, binning into groups of 2 × 2 yields 60 elements, binning
into groups of 3 × 3 yields 24 elements, and binning into groups
of 5 × 4 yields 12 elements. For the 3 × 3 binning case, the bot-
tom row of elements consists of a 4 × 3 group so that all the
elements are utilized.

Binning the metasurface elements reduces the total num-
ber of elements that must be determined and strengthens
the relative change in cavity scattering parameters when
driving a single effective element. Binning also promotes
generality, as a metasurface with smaller elements can
always approximate one with larger elements. This pro-
vides an alternative aspect of our approach and allows us
to explore the use of deep-learning models in simpler con-
figurations before working our way up to the more difficult
cases. We used four different metasurface binning config-
urations, as shown in Fig. 7, to progressively decrease the
number of elements.

APPENDIX E: DATA PREPARATION AND
COLLECTION

A major concern with deep learning is the amount of
data required for training, which grows with the com-
plexity of the problem being solved. To work within the
constraint of reasonable training time, we wish to limit
the number of data sets that must be collected. Therefore,
acquiring good training data is of critical importance to
ensure we cover the full range of possible responses. As
found in earlier work [18], a diverse set of measurements
requires variations in the number of active elements, spa-
tial frequencies of active elements, and local groupings of
active elements. Therefore, we utilized a random biased
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coin toss approach with the bias itself a uniformly dis-
tributed random number to assign values to the elements
for training data generation. To speed up operation as much
as possible, the microwave network analyzer was config-
ured to only provide S21 measurements vs frequency. With
averaging disabled, collecting 4000 sets of data took a lit-
tle under 1.5 h, while collecting 10 000 sets of data took
roughly 3.5 h. Training was performed on a computer run-
ning Ubuntu 20.04 equipped with an NVIDIA RTX 3080
GPU, and took roughly 30 min for 10 000 training sets.

For the initial experiment, we collected 4000 sets of
data in each of the specified binning configurations; the
5 × 4 configuration allows 4096 unique metasurface com-
binations, so we collected 4096 sets (covering all possible
combinations) in that case. With the exception of the 5 × 4
binning configuration, the number of sets collected was far
smaller than the number of possible configurations of the
metasurface. As discussed in Sec. N, we found we needed
10 000 sets of data for the 2 × 2 binning case.

APPENDIX F: DEEP LEARNING AND NEURAL
NETWORK LAYERS

The concept of depth in deep learning comes from com-
plexity theory as defined for circuits, with depth being the
longest path from an input to an output [127]. The number
of potential paths or ways to reuse features grows expo-
nentially with depth, which leads to progressively more
abstract features [128,129]. Depth is therefore an impor-
tant characteristic of a network to leverage as it enhances
the expressive power of the network and allows it to learn
a rich, hierarchical feature representation [130,131]. In
physics, deep learning has repeatedly been shown to be
unreasonably effective for extremely complicated prob-
lems [132].

A deep network is divided into layers, with the interior
layers often referred to as hidden, as they are unobservable
from the input or the output. Networks come in many dif-
ferent shapes and sizes; no single type is optimal for all
problems, a consequence of the “no free lunch” theorem
[133]. The networks described in this paper utilize four
different types of layers. (1) Dense, linear, or fully con-
nected layers are characterized by the number of neurons.
The output is a linear combination of the inputs. (2) Con-
volutional layers are characterized by the number of filters
and the length of the kernel (see Appendix G). The out-
put is the result of convolving the inputs with the kernels.
(3) Pooling layers are characterized by the pool size. The
output is either the maximum or average value over a
sliding window of width given by the pool size. These
layers serve to reduce the size of the feature map and
help ensure the learning process is position invariant. (4)
Dropout layers characterized by the drop out rate. Dropout
layers randomly set the specified percentage of inputs to 0

at each iteration in the training process, providing coarse
regularization and simplifying the model.

Identifying the optimal deep-learning network topology
for a given binning configuration took a significant amount
of time to iterate over many potential designs (e.g., for
our computing resources often several weeks) and was
performed offline. Once the deep-learning network archi-
tecture was determined, we switched to an online, closed
loop configuration where the data collection and training
processes were separated by a few hours rather than days
or weeks. The determined metasurface commands were
directly applied to the metasurface and the resulting S21
responses were measured by the network analyzer, closing
the loop. The online configuration also serves as a “field
test” for the deep-learning network, further validating it
against data not seen during training, as well as testing
performance against potential small variations in measure-
ment noise and the scattering configuration of the cavity
itself.

APPENDIX G: ONE-DIMENSIONAL
CONVOLUTION

An aspect that is not well understood outside of the
signal processing community is how convolutional layers
are implemented for inputs containing multiple features.
In signal processing, the feature dimensionality is referred
to as the number of channels and is sometimes defined as
the width or the depth of the data. This arises from color
image processing with three color channels for red, green,
and blue. To perform the convolution over the desired
dimension and ensure all the features are captured, the
convolution kernel is multidimensional as shown in Fig.
8. For a specified kernel length, k, the size of the kernel
for a 1D convolutional layer with an input containing N
features is k × N . The kernel will only be shifted along a
single dimension, the local frequency window in our case,
but will contain optimized weights for each element. This
means that the number of trainable parameters for a 1D
convolutional layer scales as kN , not just k. For an input
data set X , the output, y, of the convolutional layer with
kernel K is given by

y[n] =
k−1∑
i=0

N−1∑
j =0

K[i, j ]X [n − i, j ]. (G1)

For our purposes, we will zero-pad the input data by
appending (k − 1)/2 rows of zeros to either end and keep-
ing the central part of the result, so the number of points
along the convolution dimension is constant in the output.
By designing a convolutional layer consisting of Nl filters,
there will be Nl such outputs or new features for the next
layer.
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FIG. 8. One-dimensional convolution with multiple features.
Top: Graphical representation showing the N feature vectors and
F local frequencies processed by three different filters with kernel
length k. The kernel only moves along a single dimension (verti-
cally) even though the data are represented in a 2D format. Each
position of the kernel results in a single point in the output vec-
tor which has length F − k + 1 if zero-padding is not used and
length F if padded as described in the text. The weights for each
of the kNl elements of the kernel are computed collectively, but
can be different. Bottom: Numerical example with three features
containing five points each convolved with a kernel of length 3.
The input data are zero-padded with a row of zeros at the top and
bottom and the outputs for the five central rows are kept.

APPENDIX H: NETWORK TRAINING SETUP

For training the networks, the data were split into 75%
training data and 25% validation data. The validation data
are used to score the performance after each training run
and are not used during the training process itself, so that
validation is unbiased. The data were randomly shuffled
prior to splitting and each network was trained several
times to ensure results were in family and that the training
process was unbiased as well.

To score the performance, we need to define metrics for
loss and accuracy. The loss function was selected as mean
absolute error to emphasize outliers in the data, and we
define accuracy as the fraction of sets of commands that
were predicted without error. To clarify the difference, the

loss function is defined as the average of the sum of the
absolute value of the true commands, Tj , subtracted from
the predicted commands, Pj , for set j , computed over N
sets of M elements:

L = 1
NM

∑
j

∣∣Pj − Tj
∣∣ . (H1)

The loss function is then computed on a per-element basis
and tells us how close the prediction was on average for
each element. The output of the network is floating-point
rather than binary, so the loss function does not necessar-
ily provide an indication of the total number of incorrect
predictions. The accuracy metric is defined as the percent-
age of sets predicted without a single error. It is evaluated
on a per-set basis and explicitly uses the rounded output
(0 or 1) from the network. Because accuracy is computed
on a per-set basis, it is dependent on the number of ele-
ments in a command set and provides a more conservative
estimate of performance for the various binning configura-
tions. Accuracy is also more volatile, especially when the
loss function is large. The loss function is continuous and
more appropriate for training where we need to compute a
gradient, while accuracy is a better metric for scoring the
overall performance.

The networks were trained for 100–200 epochs using
SGD with momentum. The basic SGD algorithm has
potential problems with pathological curvature, or narrow
ravines, which are common around local optima, and the
response tends to oscillate back and forth across the ravine.
To address this, we can use momentum [134], effectively
forgetting a portion of the previous gradient. Momentum
can be thought of as a very coarse approximation of the
curvature or second derivative. To accelerate the training,
we explicitly use Nesterov momentum [135].

The networks were trained in batches, meaning multiple
data sets were evaluated at each iteration prior to updating
the weights. This allows several samples of data to be pro-
cessed simultaneously so that the effect of changes in the
weights is observed over multiple sets of data, improving
robustness and desensitizing the response to noise [136]. A
batch size of 100 was used by default.

To prevent the networks from simply training on noise,
we introduce an additional regularization step on the loss
function. By enforcing an L2 regularization scheme, the
regularized loss function L∗ is computed from the loss
function L, and the vector of weights for the current iter-
ation, wi, as L∗ = L + λ||wi||2. The value λ is referred to
as a weight decay. The learning rate, γ , is the step size
along the gradient, so the weights are incremented at each
iteration as

wi+1 = wi − γ∇wiL − 2γ λwi. (H2)
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Impact of using complex network layers. (a)–(c) Evolution of the loss function (mean absolute error) for the 5 × 4, 3 × 3,
and 2 × 2 binning cases. (e)–(f) Evolution of the accuracy for the 5 × 4, 3 × 3, and 2 × 2 binning cases. The blue lines indicate real-
valued network layers, the red lines indicate complex-valued network layers, the dashed lines indicate the training set, and the solid
lines indicate the validation set. The dashed black line on the accuracy plots indicates 95% accuracy. Training was performed for 100
epochs in all cases except for the 3 × 3 binning case with real-valued network layers, which was trained for 300 epochs. In each case,
training with the complex-valued layers converged faster than training with the real-valued layers. For the 2 × 2 binning case, the
complex-valued network achieved higher accuracy for the training set (99.2%) than the real-valued network did (93.6%).

Finally, the learning rate is stepped down when the loss
function plateaus, which allows the network to continue
learning when it stalls due to the rate being too high.

APPENDIX I: COMPLEX NETWORK LAYERS
AND EXISTING DEEP-LEARNING

FRAMEWORKS

With complex values, the mechanics of a network layer
are the same as for the real-valued counterpart but they
incur four times the computational cost due to having
both real and imaginary components as well as the cross
terms. Our initial deep-learning implementation leveraged
Keras [137] and TensorFlow [138]. These provide an
excellent, high-level framework that is very easy to use.
Unfortunately this ease of use complicates things when
attempting to develop custom complex-valued modules.
Complex dense layers are straightforward to implement,
but batch normalization, convolution, and recurrent layers
are not. While there are repositories with complex deep
networks containing some of these modules in Keras [139]

and Caffe [140], they are not actively maintained and are
not formally supported by the frameworks. In the case of
Keras, changes to the way the back end is handled in the
most recent version (v2.4) mean that the complex library
[139] is no longer functional and would require significant
modification to bring up to date.

This leads us to utilize PyTorch [141], another deep-
learning framework. The interface to PyTorch is lower
level than Keras, which means it requires more knowledge
of PYTHON to use effectively, but that it is also easier to
implement custom modules. In addition, there is an open
source complex library written by Sebastien Popoff [59]
that includes complex versions of dense, convolutional,
and batch normalization layers. We were able to utilize this
library with only minor modifications to the batch normal-
ization implementation to handle our multiple feature data
sets.

Figure 9 shows the impact of using complex network
layers. In each of the panels, the blue plots indicate results
for a real-valued network while the red plots indicate
results for a complex-valued network. In addition, the solid
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FIG. 10. Sequential network layer architecture. The input layer consists of Ni feature vectors containing S21 measurements in a local
10 MHz window of F points, for a total size of F × Ni. This is followed by a series of 1D convolutional layers defined by the number
of filters and the kernel length. Each convolutional layer includes a 1D convolution, a batch normalization to keep the distribution
statistics constant throughout the network, and a rectified linear unit activation function. Interspersed with the convolutions are 1D
max pooling layers defined by the pool size, p , that serve to reduce the dimensionality of the local frequency window. The output
stage consists of a global average pooling layer to further reduce dimensionality and convert the complex-valued signals to magnitude,
followed by a dense or fully-connected layer to ensure the correct number of outputs. The dense layer produces outputs that are linear
combinations of the outputs from the global average pooling layer, and is followed by a sigmoid activation function to approximate
binary values at the output.

lines show results for the validation set while the dashed
lines show the results for the training set. The complex-
valued networks all converged faster than the real-valued
networks, and the complex-valued network achieved better
accuracy on the training set than the real-valued network
did for the 2 × 2 binning case. The only differences in
training were for the real-valued network in the 2 × 2
binning case. The two differences here were that (1) the
“patience” parameter, or number of epochs to wait before
reducing the learning rate, had to be increased signifi-
cantly because the training converged slowly even with an
aggressive learning rate; and (2) the number of epochs had
to be increased from 100 to 300 in order to capture the
converged model. The increased patience parameter leads
to a longer period of oscillations in the validation set loss
function.

The acceleration in training comes with a caveat in
that the overall computational time for the purely real-
valued deep-learning network is still less than that of the
complex-valued deep-learning network. Complex-valued

layers increase the computation requirements for multipli-
cation and convolution by a factor of 4 to handle the real
and imaginary terms as well as the cross terms. In addi-
tion, highly optimized and efficient implementations of
purely real-valued layers are readily available through the
NVIDA CUDA deep neural network library (cuDNN), but
are not available for their complex-valued counterparts.

APPENDIX J: NETWORK ARCHITECTURE FOR
SEQUENTIAL LAYERS

Figure 10 presents the generalized architecture used for
sequential layers. The input consists of Ni feature vectors
containing the local 10 MHz windows with F points in
each vector. One-dimensional CNN layers with Nl filters
and a kernel length of kl at the lth layer perform the feature
extraction. As shown in the lower inset, each CNN layer
includes a 1D convolution followed by a batch normaliza-
tion and a rectified linear unit (ReLU) activation function.
The batch normalization is used to ensure the distribution
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(a) (b)

FIG. 11. Deep-learning performance with complex-valued layers for 5 × 4 Binning. (a) Evolution of the loss function for the training
and validation sets over 200 epochs. The loss function measures the average prediction error per element and provides an estimate of
the confidence in the prediction. (b) Evolution of the accuracy for the training and validation sets over 200 epochs. Accuracy provides
the relative number of sets of commands that were predicted without error, and shows that perfect prediction was achieved on both
the training and validation sets in fewer than 100 epochs. The loss function continues decreasing after the accuracy saturates at 100%
because it is continuous and evaluated on the floating-point predicted values, and the decrease indicates the network is still learning
and improving its estimate.

of the data (mean and variance) remains relatively constant
throughout the network; changing distributions between
layers induces internal covariate shift and leads to conver-
gence issues during training [142]. The ReLU activation
function is used in virtually all deep-learning networks as
it does not experience a vanishing gradient due to satu-
ration, and leads to expedited convergence and generally
better solutions than sigmoid like functions [143].

The CNN layers are grouped together to form stages and
are interspersed with 1D max pooling layers defined by
the pool size, p . Also included are dropout layers for reg-
ularization, which are not explicitly shown in Fig. 10. The
output stage contains a global average pooling layer that
averages along the F dimension, reducing the feature maps
to a single dimension. It also converts the complex-valued
signals to magnitude and is followed by a dense layer that
provides the correct number of outputs, No. As shown in
the upper inset, the output of the dense layer is a linear
combination of the outputs from the global pooling layer,
with a sigmoid activation function used to clip the output
between 0 and 1.

APPENDIX K: OFFLINE TRAINING RESULTS
FOR 5 × 4 BINNING

When using 5 × 4 binning, the metasurface is effec-
tively partitioned into 12 elements, for 4096 possible sets

of commands. We measured all 4096 combinations, and
the 75%/25% split yielded 3072 sets for training and 1024
sets for validation. The batch size was set to 64 as a result.
A purely sequential deep network was utilized, following
the layout given in Fig. 10. Four CNN layers, a max pool-
ing layer, and a dropout layer were combined into a stage.
Four stages were then used, with the output provided by
a global average pooling layer and a dense layer with a
sigmoid activation function.

Initial experiments used purely real-valued deep-
learning layers, in which case the global average pooling
layer only provided dimensionality reduction. We were
able to establish excellent prediction performance, regu-
larly achieving fewer than 10 total prediction errors over
the validation set or better than 99% accuracy after training
for 500 epochs. When switching to complex-valued lay-
ers with the same architecture, we were able to regularly
achieve perfect prediction (100%) over both the training
and validation sets after training for fewer than 100 epochs.
This improvement demonstrates that the complex-valued
deep-learning network is able to exploit phase as well as
amplitude to better fit the relationship between metasurface
commands and transmitted power.

The training results for the 5 × 4 binning case with
complex-valued layers are shown in Fig. 11. Figure 11(a)
shows the loss function evolution for the training and vali-
dation sets while Fig. 11(b) shows the accuracy evolution.
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(a)

(b)

(c)

FIG. 12. Receptive field. (a) The receptive field of a convo-
lutional neural network (CNN) layer indicates the number of
points in input space that contribute to a single point at a given
layer. (b) For a purely sequential architecture, the receptive field
increases monotonically. (c) A parallel architecture with concate-
nation produces multiple receptive fields, with each available for
subsequent layers, promoting sparsity in the representations.

The performance is excellent, achieving perfect prediction
over both the training and validation data sets. Note that the
loss function continues to improve even after the accuracy
saturates at 100%. This is because the loss function is con-
tinuous and computed using the floating-point predicted
values rather than the rounded binary values; it shows that
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FIG. 13. Terrapin Module architecture. Five parallel branches
with eight 1D CNN layers and a max pool layer are used in the
module. The module operates on the pseudo-2D data format dis-
cussed in the text, and the input layer can ingest either the raw
measured S21 parameters or the outputs from a previous Terrapin
Module. The output layer is then connected either to a subsequent
Terrapin Module for additional processing or to the final out-
put layer for conversion to metasurface commands. Each CNN
includes a 1D convolution, a batch normalization, and a rectified
linear unit activation function. The second-level CNNs have ker-
nel lengths of 5, 17, and 33 to increase the receptive field by 125
kHz, 500 kHz, and 1 MHz, respectively. A 1D max pooling layer
with pool size of 4 is included to provide a pooling window of
125 kHz as well. Nxx denotes a tunable parameter for the number
of convolutional filters at each branch and stage, acting as a dense
or fully connected layer for the global correlations. The convo-
lutions with unit length kernels serve to buffer and condition the
inputs to each stage, and the single-layer first branch maintains
the receptive field sizes from previous modules. The outputs of
each branch are concatenated together to form the module output,
preserving the receptive field sizes for subsequent layers.

the network is still learning and continuing to increase its
confidence in the prediction.

APPENDIX L: RECEPTIVE FIELD AND
INCEPTION MODULE

The receptive field of a CNN defines the number of
points in input space that contribute to the result at a sin-
gle point in a given layer. Our CNNs use zero-padding to
keep the output size fixed, and the stride and dilation are
always set to 1. This means the receptive field at any layer,
rl, is given by a simple recursive equation dependent on
the receptive field at the previous layer, rl−1, and the kernel
length of the current layer, kl [144]:

rl = rl−1 + kl − 1. (L1)

As shown in Fig. 12, the receptive field for a sequential
architecture grows monotonically with depth, with each
layer only seeing the receptive field from the preceding
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layer. An architecture that utilizes parallel branches along
with concatenation conserves the intermediate receptive
fields, making them available for all subsequent layers.
This introduces width as well as depth to the network and
provides the motivation for the inception module.

An inception module is designed to promote sparse fea-
ture representation using available dense components [61]
and works by optimizing the receptive field coverage of a
convolutional network. The receptive field is the number
of points in input space that contribute to a point at a given
layer of the deep-learning network. Through the use of
parallelization and concatenation, the receptive field sizes
at a layer are conserved for subsequent layers to utilize,
extracting features through the width of the deep-learning
network as well as its depth.

The original inception module was developed for image
processing and operates in a true 2D space, with full 2D
convolutions. It uses four parallel paths with CNN layers
containing unit length kernels for buffering and condition-
ing, along with three and five sample length kernels for
feature extraction, and a max pool layer to improve per-
formance [61]. There have been several variations of the
inception module; however, none operate in the pseudo-
2D space we desire. For our “images,” the frequency
spacing along columns is the resolution of the network
analyzer (31.25 kHz), while the frequency spacing along
rows is the separation between local windows (10 MHz).
The difference in sampling means we need to treat the
rows and columns accordingly and avoid traditional 2D
convolutions that assume uniform sampling. Therefore, we
modified the general architecture of the inception mod-
ule to perform 1D convolutions over the 10 MHz local
frequency windows. The 1D convolutional filters then
extract local features over the 10 MHz windows, while the
relationship between the filters acts as a dense or fully con-
nected layer, extracting global features over the full 1 GHz
measurement window.

From previous work with the cavity, we found that the
mean mode spacing is approximately 125 kHz and we
demonstrated the ability to generate strong nulls over a 500
kHz bandwidth [18]. This suggests we should use a pool-
ing window of 125 kHz and allow the receptive field to
increase by 125 kHz and 500 kHz at each stage or layer in
the deep-learning network. After experimenting, we found
that adding a fifth stage which increased the receptive field
by 1 MHz helped to further improve performance. We refer
to the final version of our module as a “Terrapin Module,”
a block diagram of which is shown in 13.

APPENDIX M: OFFLINE TRAINING RESULTS
FOR 3 × 3 BINNING

For the 3 × 3 binning configuration, the purely sequen-
tial network did not perform very well and was unable

to learn the relationships for either the training or vali-
dation sets. This inspired the modified inception module
that we defined as the Terrapin Module in the main paper.
The performance difference between the sequential CNN
model and the Terrapin Module is shown in Fig. 14, which
presents training results for the 5 × 4, 3 × 3, and 2 × 2 bin-
ning cases. The sequential CNN is not able to train very
well for the more complicated systems (3× and 2 × 2 bin-
ning cases), while the Terrapin Module is able to exploit
the more complicated relationships and provide similar
performance to the sequential CNN model on the 5 × 4
binning case.

The results for the 3 × 3 binning case with complex-
valued layers are shown in Fig. 15. The impact of reducing
the learning rate on a plateau can be seen at epoch 54,
where a drop in the learning rate by a factor of 10 induces
a drop in the loss function by approximately a factor of 2.

APPENDIX N: OFFLINE TRAINING RESULTS
FOR 2 × 2 BINNING

For the 2 × 2 configuration with 4000 sets of data, we
were able to achieve better than 98% accuracy on the train-
ing set, but were limited to approximately 50% accuracy
on the validation set. The discrepancy between training
and validation results is a hallmark of overtraining. In
this particular case, the validation results were improving
but stalled as the training results approached 100% accu-
racy. The error landscape became extremely small with a
negligible gradient, so there was no direction to take and
continue learning. The network therefore learned specific
features of the training set rather than general features of
the full range of possible responses. This suggests the over-
training is due to having a limited amount of data (only
4000 sets). We captured a larger amount of data (10 000
sets) and were able to achieve better than 95% accuracy on
both the training and validation sets. Perfect accuracy for
the validation set may be possible with the collection of an
even larger amount of data.

APPENDIX O: SCATTERING FIDELITY LOSS

Figure 16 shows the decay in scattering fidelity for
online validation at the 4, 5, and 9 day marks. The accu-
racy is still better than 85% after 5 days, but the number
of sets with more than one prediction error has increased.
After 9 days, the accuracy drops to 65.5% and many cases
with 2, 3, and even 4 prediction errors are found.

APPENDIX P: PERFORMANCE VS
REVERBERATION TIME

An additional set of experiments was performed to
determine the impact of cavity reverberation time on the
performance of the deep-learning network. To increase the
losses in the cavity (and decrease the reverberation time),
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(a) (b)

(c) (d)

FIG. 14. Sequential neural network performance with complex scattering systems. The solid lines indicate results for the validation
data while the dashed lines indicate results for the training data. (a),(c) Evolution of the loss function and accuracy for the 5 × 4, 3 × 3,
and 2 × 2 binning cases using the sequential CNN model. Only the 5 × 4 binning case is able to significantly reduce the loss function
and provide reasonable accuracy. There is no separation between the validation results and the training results, indicating that there
is not an issue with too little data. (b),(d) Evolution of the loss function and accuracy for the 3 × 3 binning case using the sequential
CNN and Terrapin Modules. The Terrapin Module provides similar loss and accuracy to the 5 × 4 binning case with the sequential
CNN.

rf absorbent materials were placed inside the cavity. For
each loss configuration, an ensemble of measurements was
collected using the mechanical mode stirrer and the rever-
beration time was estimated from the power delay profile
[145]. The mode stirrer was then set to a fixed position
and another ensemble was collected for training data with
10 000 random metasurface configurations (following a
biased random coin toss approach). The correlation coef-
ficient was computed over all possible measurement pairs,
for 5 × 107 combinations, to assess how highly correlated
the training sets were. The deep-learning network was then
trained using the same network and parameters as previ-
ously discussed and the results are shown in Fig. 17. The
cavity reverberation time ranged from 23 ns to 179 ns.
The statistics of the correlation coefficients are shown rel-
ative to the left-hand axis, and show the median value,
quartiles, and full extent. The achieved accuracy of the
deep-learning network on the training set is shown as the
dashed red line relative to the right-hand axis and indicates

that the accuracy and correlation coefficients are inversely
related. The deep-learning network is capable of operating
in extremely complicated scattering environments, but the
performance degrades as the cavity losses increase. This is
because ray trajectories do not persist as long for high-loss
systems; the number of bounces for a given trajectory is
reduced, which means there are fewer rays intercepted by
the metasurface.

APPENDIX Q: FUTURE DIRECTIONS

Future directions will refine our technique to intention-
ally scramble (or unscramble) waves propagating through
a complex scattering environment. We mention three aspi-
rational goals. The first is tuning the scattering responses
through a controller that optimizes the system for a given
application at arbitrary frequencies and bandwidths. Spe-
cific metrics include minimizing transmitted power for
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(a) (b)

FIG. 15. Deep-learning performance with complex-valued layers for 3 × 3 binning. (a) Evolution of the loss function for the training
and validation sets over 100 epochs. The loss function hits a plateau at approximately epoch 33 but shows an additional drop at epoch
54 when the learning rate is reduced. (b) Evolution of the accuracy for the training and validation sets over 100 epochs. Accuracy
provides the relative number of sets of commands that were predicted without error, and shows that perfect prediction was achieved
on both the training and validation sets in fewer than 100 epochs. The loss function continues decreasing after the accuracy saturates
at 100% because it is continuous and evaluated on the floating-point predicted values, and the decrease indicates the network is still
learning and improving its estimate.

cold spot generation, minimizing scattering matrix eigen-
value magnitudes for coherent perfect absorption, or min-
imizing the bit-error rate for wireless communication. The
second aspiration al goal is to introduce feedback from the
environment to dynamically update the controller and react
to changing environmental conditions. The third aspira-
tional goal is to realize a fully autonomous system that

enables persistent and robust smart radio environments that
do not require human intervention.

For on-the-fly learning and adaptation to changing envi-
ronmental conditions, we propose the future use of rein-
forcement learning [56,146], which is at the intersection of
artificial intelligence and optimal control. Reinforcement
learning uses an agent that interacts with an environment

(a) (b) (c)

FIG. 16. Scattering fidelity loss over time. �S21 for online validation sets taken a specified time after the training data were collected.
The shaded regions show the extent of the single-element Hamming distance results from the training data. The gray region shows the
full range from maximum to minimum, and the red region shows the 25th and 75th percentiles. The blue diamonds indicate cases with
a single prediction error, the black circles indicate cases with two prediction errors, the red squares indicate cases with three prediction
errors, and the green circles indicate cases with four prediction errors. These panels show that the �S21 for prediction errors is very
small, and in the lower region of the statistics covered by observed cases with single-element Hamming distances. (a) Validation 4 days
after collecting training data; 2000 sets of commands were tested, with 303 mispredictions for an accuracy of 84.9%. (b) Validation
5 days after collecting training data; 2000 sets of commands were tested, with 236 mispredictions for an accuracy of 88.2%. (c)
Validation 9 days after collecting training data; 2000 sets of commands were tested, with 690 mispredictions for an accuracy of 65.5%.
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FIG. 17. Deep-learning performance vs cavity reverberation time. Performance of the deep-learning network for different cavity loss
configurations as specified by the cavity reverberation time (x axis). The reverberation time is shown on a log scale to highlight the
behavior for high-loss configurations (short reverberation times). The statistics of the correlation coefficient over the approximately
50 million combinations of measurement sets are shown relative to the left-hand y axis. The blue line shows the extent between the
quartiles, the blue circle indicates the median value, and the dashed black line shows the full extent. The achieved accuracy of the
deep-learning network is shown as the dashed red line relative to the right-hand y-axis, with individual points represented by a cross.
The trend shows an inverse relationship between the correlation coefficient and the achieved accuracy of the deep-learning network,
indicating that the deep-learning network struggles to identify features in the data when they are highly correlated.

to learn about it and then manipulate it in order to max-
imize (minimize) a reward (cost function), leading to the
development of optimal control policies. In particular, the
subset of reinforcement learning known as deep or double-
deep “Q” learning is gaining traction as a method for
controlling quantum states [147–149]. Deep “Q” learn-
ing uses a deep-learning network to estimate a quality
matrix that scores the result of taking a particular action,
while double-deep “Q” learning uses two estimates to limit
the implementation of poor control policies from over-
estimation [150]. The deep-learning network architecture
developed in this paper is well suited for estimation of this
quality matrix.

Specification of an arbitrary scattering condition in the
current implementation is cumbersome, as the complete
S21 response over the full 3–4 GHz measurement window
must be defined. For practical engineering applications, we
prefer a simpler method of defining a desired wave scatter-
ing condition. Deep reinforcement learning also helps in
this case, as it scores the performance of an agent through a
scalar, positive, and real-valued metric. The agent uses the
deep-learning network to learn the relationship between
metasurface commands and S21 responses, but the compli-
cated details are hidden from the user. There are therefore
two learning components to deep reinforcement learning:
an inner deep-learning network that learns how to map

S21 responses onto metasurface commands, and an outer
agent-based loop that learns how to use the inner deep-
learning network to optimize the desired metric. This
metric can be the total power in a specified bandwidth for
cold spot generation, the magnitude of the eigenvalues of
the full S-matrix at a given frequency for coherent per-
fect absorption, or the bit error rate for communications
systems.

Learning from scratch can be slow and may not be fast
enough to adapt to changing environmental conditions. In
this case, transfer learning, or using information about a
similar problem to accelerate training for another one, can
be incorporated into the reinforcement learning strategy
[151].
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